第133章 基于AI的EDA灵韵突然发布,里边究竟有什么?(3 / 4)

再加上机器这种东西,天生比人类更加不容易犯错,也不受情绪和压力影响,更没有吃喝拉撒睡,生病发烧等这类困扰,而且速度极快!

综合起来,那比中级工程师强多了!

“网络上是没有公开的高级别芯片设计方案,这些东西都是商业机密。”

于东顿了顿,悠悠说道:“但网络是一个巨大的图书馆,原理和理论都存在,各类研究、论文成果也是公开的。

“类思维AI,可不仅仅是通过数据训练的,甚至都不需要大量的数据,少量的数据也只是辅助。要不,怎么解释,卷耳会智能科技想要训练一个AI那么容易?”

“你是说,卷耳智能科技的AI训练是知识驱动?”2012实验室的一位负责人戚斌说道:“而非数据驱动?”

“大概率,知识为主,数据仅仅只是起到示例和示范的作用!”于东点了点头。纪弘并没有跟他说过这个,这是他自己的猜的。

而且,不止于东一个人有这种猜测——卷耳智能科技AI训练的速度太快了。

结合纪弘在各个场合对类思维的介绍——那些原理肯定是在忽悠人——但少量数据就能训练,这肯定是真的。

证据也很好找——能够查到的资料,卷耳智能科技购置的算力显卡并不多,明面上也没有大的基地型算力中心。

就算有隐藏,也不会太多!

从时间和成本的角度去推算——那就不可能是海量数据训练AI的方式——卷耳智能科技就没多少算力!

既然是少量数据就能训练,那就一定是知识在驱动——换句话说,这是真正的机器学习。

现在所谓的机器学习,都是利用大量数据通过概率统计、逼近函数等方式,寻找最优解的程序算法,而不是真正的学习。

戚斌沉默了:华为和业内顶尖企业其实一直在致力于研究知识和数据双轮驱动的人工智能——他们称之为第三代人工智能。

但现在,依然是以海量数据为主,知识更多的是应用在鞭策算法中,很难直接融合进学习算法。

而类思维……

是了,类思维,从这名字就该猜出来,它的学习算法是更趋向于人的——直接学习知识。

就像人学习造句,先学习字,再学习词,然后学习词的意思。

最后给一个例子,伱就去仿写吧。

字、词、意思就是知识,例子就相当于是数据。

类思维AI大概率也是这样的,所以根本不需要多少数据量——毕竟示例一下能用多少呢?

但知识驱动的人工智能……

举报本章错误( 无需登录 )