回过神后。
他有些滑稽的揉了揉眼睛,再次朝公式看去。
内容依旧不变。
徐云见状张了张嘴,将右手放到了面前。
只见自己的女朋友,此时正在不停的微微颤抖.....
这道公式具体数值徐云其实没什么印象,但这道公式的表达形式他却并不陌生:
这道公式的形式,赫然与2017年西班牙天文学家奥尔蒂斯团队通过掩星观测、在巴塞罗那超算中心...也就是bsc协助下推导出的环系天体通式几乎一致!
那篇文章的d/10.1038/nature24051,发表在《自然》杂志上,也是截止到2022年9月14号为止最精确的一道通式!(我用这篇论文加上sd..gov的jpl精密星历中的de421这个版本算出来的,基本思想是用开普勒平根数解析外推,考虑了根数的随时间的变化,近似到t2项,已经尽量合理了。)
同时值得一提的是。
bsc的那台超算叫做odin,也就是北欧神话中的......
神王奥丁。
换而言之......
在1851年。
高斯,一个74岁、行将就木的小老头.......
以凡人之躯,比肩了神明!
看着在纸上缓缓落笔的高斯,徐云的脑海中又浮现出了高斯当初的那句话:
“我不创造奇迹,因为我本就是一个奇迹。”
徐云不知道高斯为了计算这道公式付出了多少心力,这些在此时此刻已经失去了提及的必要。
一切对他努力的描述,都不及此刻这一道十五厘米长的公式来的直观。
这一刻。
地面上的人类之光,灿烂过了天上的万千星辰。
写完这道式子后。
高斯将这张纸递给了黎曼,吩咐道:
“波恩哈德,把它交给查尔斯先生吧——对了,柯西、凯来你们来的正好,一起帮忙复验数据吧。”
柯西和凯来以及其他几位数学家们闻言对视一眼,脸上齐齐冒出了一个问号:
“?”
妈耶?!
我们只是过来看个演算过程,怎么一转眼就被抓壮丁了?
不过过了几秒钟。
柯西还是微微一叹,认命道:
“罢了罢了,弗里德里希,我们就给你做一次苦力吧。”
凯来和彭赛列等人也跟着点了点头。
高斯的推演过程给他们带来了不少新思路,甚至打破了个别人持续已久的瓶颈,令他们醍醐灌顶。
用玄幻的术语来描述,那就是悟道!
因此于情于理,让这些大老们做一次工具人倒也没啥问题。
黎曼很快将这道式子交给了巴贝奇,由阿达这个人类历史上第一位的程序猿输入起了相关内容。
与此同时。
时任格林威治天文台台长的乔治·比德尔·艾里也带着手下来到徐云身边,将一箱箱的观测记录逐一打开。
这些观测记录都是在冥王星之夜结束后,由高斯和法拉第亲笔写信、嘱托各国天文台拍下的星空观测记录。
作为回报....或者说代价。
高斯等人则将施密特望远镜的构造图纸‘支付’给了各大天文台。
徐云对此自无意见。
毕竟施密特望远镜不同于他拿出的其他设备,这玩意儿对科技水平的推动其实没多少特别重大的作用——顶多就是让人类提前观测到一些星体罢了。
这年头也不是老苏当初的公元1100年。
老苏那会儿最普通的望远镜都没出现呢,能够观测星空自然意义重大。
在1851这个时间点,施密特望远镜顶多就是特定情境下会比较有用。
比如妲神星、阋神星被提前发现个几十年,说白了意义也就那样,顶多让冥王星更早的被移除出九大行星罢了。
反正冥王星也没意见不是?
等太空射电望远镜一问世,施密特望远镜的地位还将迅速降低。
除非天文界能靠这玩意儿发现外星人,否则它将是徐云拿出的所有技术中,对科技史推助力最小的一件东西。
“罗峰同学。”
来到徐云身边后,乔治·比德尔·艾里指着箱子,对他介绍道:
“过去一年里,除了欧洲各大天文台之外,我们还说服了美洲的五家天文台进行协作,参与机构一共达到了22家。”
“每家天文台每日最少会拍摄三张照片,加上我们格林威治天文台的全力观测,箱子里的图像记录足足多达两万五千多张。”
“好家伙,这么多呀?”
徐云闻言微微一愣,回过神后连忙对乔治·比德尔·艾里道谢道:
“那可真是多谢您了,艾里先生。”
这年头可不像后世,相片...或者说胶卷的成本很高。
即便是天文台这种官方机构,一张相片的成本也在0.1英镑上下。
按照此前的汇率计算,相当于后世的90到100块钱之间。
因此在徐云此前的预估中。
一家天文台能做到每天拍摄一张记录就非常难得了。
结果没想到这些天文台居然如此给力,一年下来拍摄了这么多的观测记录。
这些观测记录加上分析机、高斯的公式以及最新的工具人团队。
基本上可以说‘人事’方面已经尽到了极致。
剩下的便是.......
知天命了。
.......
这一箱箱的观测记录很快被分发到了桌上,由工具人团队们开始进行起了坐标换算。
换算后的坐标被输入分析机,进行最小二乘法的计算。
在冥王星之夜高斯使用的量级是8次方,也就是:
l=(l0+l1*t+l2*t^2+l3*t^3+l4*t^4...l8*t^8....)/10^8。
而这次有了分析机协助,高斯直接上了......
十七次方!
当然了。
能上这种精度的很大部分原因在于轨道经度的换量最大也不会超过1,普遍都在0.1-0.4左右浮动。
比如0.412的17次方是0.000000283957。
0.13的17次方则是0.00000000000000008650415919381338。
这些数字虽大,但都在分析机的量级之内。
如果换成其他更大或者更小数字,那么17次方运算就会超过算力了。
后世计算行星轨道上的一般都是50-70次方,更专业的团队——比如冥王星杀手麦克·布朗那种,使用的基本都是120+的量级。
看到这里。
或许会有同学感觉奇怪:
不对啊。
为啥我手机的计算器和百度随便搜的计算器,都可以计算出几十次方的结果叻?
超算的能力就这?
这就涉及到了一个概念,也就是科学计数法。
目前市面上绝大多数计算机都有一个计算上限,超过这个量级之后,便会把某个数表示成a与10的n次幂相乘的形式。
比如19971400000000=1.99714x10^13,计算器或电脑表达10的幂是一般是用e或e。
也就是1.99714e13云云.....
现代超算计算要用到的次方乘数,基本上都精确到了小数点后10位甚至更多。
例如0.4556456112的50次方等等。
这种计算若是不适用超算,普通电脑或者计算器很难现实精确的结果,基本上都是约等数。
没用的知识又增加了.jpg。
寻星项目的计算执行者是高斯和巴贝奇,因此在计算开始后,徐云便转移到了今天的‘第二会场’。
也就是迈克尔逊莫雷实验的空地。
此时此刻。
受柯西等人的影响。