别看这个公式瞅起来跟颜文字似的,好像又是( ̄▽ ̄)~*( ̄▽ ̄)/又是()[]~( ̄▽ ̄)~*。
对于叶笃正而言。
在见到它的一瞬间,他的心脏便狠狠漏跳了一大拍!
这是......
的演化方程!
同时由于?(u)=(??)u?(u??)的缘故,所以这个演化方程还可以改写为对流导数的形式:
d。
写到这里。
叶笃正再次一停顿,扭头又
看向了徐云,迫不及待的问道:
「韩立同志,后面呢?后面的思路是什么?」
此时此刻。
叶笃正仿佛回到了自己在芝加哥读书的日子。
当时他在追一本连载于芝加哥日报的推理,每每看完一章时便迫不及待的想要疯狂进行催更。
如果不是怕失去留学海外的宝贵资格。
叶笃正甚至考虑过要不要把作者绑到小黑屋去更新——一天必须要更新个五万字,要不然当天不能吃饭!
而在他对面。
徐云则示意乔彩虹将自己的轮椅再朝叶笃正靠近了一些。
随后他从叶笃正手中接过纸和笔,一边写一边解释道:
「叶主任,这个方程想要继续推导下去,首先就要明白这个变式的物理意义。」
「我们在这里再导入一个角动量方程做个对比...你看,物理意义应该就很明显了吧?」
叶笃正认真看了小半分钟,很快哦了一声:
「哦,我懂了。」
「右边描述的是因为流体元的拉长,体元惯量矩的改变,还有就是粘性力矩作用在体元上,没错吧?」
徐云点了点头。
这个变式的物理意义,差不多可以算是后世涡度的入门级概念。
也就是流体块的涡度可能因为它的拉长而改变,引起惯量矩的改变,或者因为粘性应力加速或者减速。
紧接着。
徐云又写了个佩克来数。
也就是pe=ud/α,又在上头换了个圈,带入回了原式。
看到这里。
叶笃正的鼻翼中忽然传出了一声带着意外的鼻音,眉头骤然一扬。
他发现了一个此前从未意识到的问题:
根据变式来看。
二维流中涡度是对流,并且像热量一样可以扩散,那么关于佩克来特数的类比就是.....
re=u?/v。
这意味着涡度像热量一样,在二维流内部不能凭空产生或毁灭。
并且它可以通过对流从一个地方移动到另一个地方。
但另一方面。
∫dv对于所有定域的涡度团是守恒的。
也就是说......
漩涡通过速度场对流,通过扩散传播,但是每个漩涡内总的涡度保持不变。
换而言之.....
边界正是涡度的来源!
这是一个叶笃正从未想过的概念,这代表着他之前的很多思路都是错误的,他确实低估了边界的深度。
但这也同样代表着.....
一个新模型的可能!
准确来说应该是......
气象学中第一个真正可行的新模型!
要知道。
虽然挪威学派在数值天气预测这方面贡献很大很大,但即便是到现在,整个气象行业也依旧没有一个真正的模型。
事实上。
按照正常历史发展。
气象学要到1971年才会由拉苏尔建立出第一个气候模型。
并且拉苏尔建立的模型预测的还不是局部天气,而是与全球变暖有关的气候模型。
而眼下......
叶笃正的面前出现了一条新路。
一条从未有人涉及过的新路。
看着一脸震撼的叶笃正,徐云则显得很平静。
他所说的这些概念并非基于他的个人能力,而是来自后世已经相对完备的知识体
系,没啥值得骄傲的。
毕竟不同于眼下这个时期。
虽然后世对于n-s方程虽然依旧处于破解阶段,一般形式的解析解依旧遥遥无期——因为卡在了非线性的adve项上。
但另一方面。
它在各种极端情况下.....例如无旋,无粘性等情景中还是有解析解的。
后世只要在dns上投入足够的计算资源,甚至可以求解复杂的流体流动。
这些都是徐云穿越前已经有了很强的定式结果,以至于徐云这种非气象领域的人都能随手拿出来做释义。
当然了。
由于专业壁垒的缘故,徐云对于涡度的了解到这里也差不多就完了。
至于再进阶的相当位温、假相当位温、潜热、感热、辐射这些概念.....
你想让徐云解释一下它们的含义倒是没什么问题,但再深入的推导就纯属痴心妄想了。
不过没关系。
到了眼下这一步,叶笃正显然已经进入了「悟道」的状态。
以这位华夏现代气象学主要奠基人的能力而言,剩下的环节哪怕不需要徐云帮忙,他一个人多半也能搞定。
更别说他的边上还有陶诗言这位天气动力学的顶尖大老存在呢。
因此很快。
叶笃正便开始自己推导起了后续步骤。
「温度的支配方程是dt/dt=α?2t......」
「那么温度场的方程自然就是dt/dt=?t/?t+u?t/?x=α?2t......」
「根据流体静力平衡和温度直减率可得.......」
「诗言兄,你觉得这里改成分段函数转折点压强如何?」
「正合我意......」
二十多分钟后。
叶笃正在纸上写下了另一道算式:
d/dt(jsij?v(?)]。