眼下这个时期八重法的争议性还很大,因此很快便有专家提出了不同的看法:
「su3群?洪元同志,按照你的意思,所谓的元强子不是一个两个,而是八个?」
「如果有这么多的所谓元强子存在,那么cp破缺性质要如何解决?——最简单的一个问题,在这种情境下,同态映射的核在数学上岂不是得是二对一了?」
开口的这位学者叫做王竹溪,也是一位华夏知名的物理学家,华夏第一批学部委员。
不过王竹溪之前工作的方向主要偏教育端,和朱洪元的交集并不算深。
听到王竹溪的疑问,朱洪元却微微笑了笑:
「竹溪同志,你的这个问题我能解答。」
只见他从一旁的桌上拿起了纸和笔,飞快的在桌上边写边解释了起来:
「竹溪同志,同态映射的本质其实就是幺正矩阵的映射验证,只要能证明so(3)群的元素都可以映射到行列式为1的2x2矩阵d1/2(α,βγ)上就可以了。」
「根据su(2)群和so(3)群的定义,so(3):={o∈gl(3,r)|oto=13,det(o)=1},su(2):={u∈gl(2,c)|u??u=12,det(u)=1}。」
「接着找一个三维矢量vv=(v1,v2,v3),可以利用泡利矩阵将其映射成一个22无迹厄米矩阵,即vv→rr=viσi=(v3v1??iv2v1+iv2??v3),这个映射的逆映射为vi=12tr[σirr],并且有det(rr)=??|vv|2,以及12tr(rr2)=|vv|2......」
「这个无迹厄米矩阵可以表示su(2)群上的代数,那么su(2)群在这个代数上的伴随作用为rr=urru??.其中u∈su(2)......」
「那么诱导出一个在三维实矢量空间的表示,v′i=12tr(σirr′)=12tr(σiuσju??)vj,v′i=rji(u)vj,因此,rji(u)=12tr(σiuσju??).......」
「如此一来,只要证明r(u)∈so(3)就行了,我们的思路是......」
看着洋洋洒洒大书特书的朱洪元,徐云的脸上也忍不住露出了一丝微妙。
这算是巧合吗?
要知道。
后世华夏量子场论中有关群论在同态映射方面的证明,主要的「操刀者」正是朱洪元来着.....
不过朱洪元编译那套书的时间是在八十年代中期,如今看来很明显,这又是一个因为国际封锁而被埋没的成果。
十多分钟后。
在众人的注视下,朱洪元写下了最后一段话:
「根据核空间的定义,这个同态映射的核为h={u∈su(2)|r(u)=13},因此,要求urru??=rr,对于任何rr均成立。」
「根据shur引理可知,u=λ12,其中λ是一个常数,又因为det(u)=1,因此λ=±1.由于r(u)=r(??u),且这个映射的核为{12,??12},由此可证,这个同态映射在数学上是二对一的。」
「.......」
看着面前的这份计算结果,王竹溪也陷入了沉默。
朱洪元居然真推导出来了?
而且看这情况,他似乎很早之前便有了具体的计算思路?
不过在安静了小半分钟后,王竹溪还是忍不住摸了摸下巴,说道:
「洪元同志,我不是有意在抬杠啊,只是咱们是搞物理研究的,单纯在数学结果上推导成立,似乎还有些不太够吧?」
「如果没有更加清晰的实验结果,我还是对你的这个元强子模型保持意见。」
听闻此言,朱洪元的脸上也露出了些许难色。
他自然知道王竹溪不是在针对自己,毕竟数学和物理确实是两个学科。
虽然有个词叫做万物皆数,但这个本质其实是逻辑自洽,只是数学也符合逻辑自洽罢了。
至少目前来说,朱洪元确实没有足够的证据能够支撑自己的理论。
然而就在现场有些沉寂的时候。
众人不远处的某张桌子上,忽然响起了一道声音:
「啊咧咧,好奇怪哦......「
.....
注:
深夜网吧码字,隔壁一大哥把鞋子袜子全脱了光着脚(没啥味道也没翘到桌上),我犹豫了一会儿碍于个人形象还是没这样做.....