汤川秀树主动从桌上取过了这本期刊,同时朝小柴昌俊和朝永振一郎招了招手:
“小柴桑,一郎先生,麻烦你们过来一下。”
小柴昌俊与朝永振一郎闻言愣了几秒钟,回过神后很快来到了汤川秀树身边:
“汤川桑,怎么了吗?”
汤川秀树点点头,将这期刊递给了他们:
“你们看看这个。”
小柴昌俊见状主动对年长的朝永振一郎做了个请的动作,朝永振一郎说了声阿里嘎多,便接过期刊与小柴昌俊一同看了起来。
与汤川秀树有些类似。
一开始的时候小柴昌俊与朝永振一郎都没对上头的内容太当回事,脸上的神色主要以好奇与探究为主——好奇汤川秀树为什么会如此严肃。
不过很快。
二人的表情便同时一凝,朝永振一郎更是将期刊放到了桌上,拿起一张纸算写了起来。
过了大概五分钟左右。
小柴昌俊与朝永振一郎近乎同时从桌上抬起头,异口同声的说道:
“汤川桑,这不对劲!”
汤川秀树对于他们的反应并不意外,只是暗自握紧了拳头,问道:
“两位,你们也这样认为吗?”
小柴昌俊用力点了点头,笃定的说道:
“没错,这里一定有问题!”
众所周知。
电磁相互作用对应su(1)群,弱相互作用对应su(2)群,强相互作用对应su(3)群。
su(n)群可以用它的基础表示来进行定义,元素可写为u(α)=exp(iαiti),其中生成元的形式是这样的:
(tba)d=δaδdb1nδabδd,且满足对易关系[tab,td]=δbtadδadtb。
从群参数数目来看。
su(n+m)一共有(n+m)21个参数,而子群su(n)su(m)的群参数数目为:(n21)+(m21)=(n+m)21(2nm+1)。
其中2nm个参数描写直和矩阵之外的非对角元,此时还剩有最后一个参数,用来描写对角矩阵。
这个参数的内容起点无法显示.咳咳,并不重要,重要的是另一个概念:
对角矩阵所属的群是独立的。
早先提及过无数次。
在规范场论中。
电磁力对应的是u(1)群,弱相互作用力对应su(2)群,强相互作用力对应su(3)群。
而在数学上。
u(1)其实就是复平面上的一个矢量c=re^(iθ)保持模长不变的变换,即e^(iα)乘以c的变换。可以说,u(1)的常用表示就是e^(iα)。
其中α叫连续参数,这里是转动变换的角度。e指数上除了α还有一个i,叫这种变换的生成元。
所以u(1)也可以看成矢量不变,而复数坐标系方向的选择有任意性,这些坐标系之间的变换关系。
su(2)就是复平面上的两个矢量(即两个复数),保持模长平方和不变的变换,要求变换矩阵的行列式
为1,于是要求生成元的迹必然为0。这复平面上的两个矢量,可以看成一个4维实空间中的矢量,投影到两个平面上的投影矢量,每个平面上的投影矢量都对应一个独立的复数,两个投影矢量画在一个复平面上,就是上一段落所述的二维复矢量的来源。
当4维空间中的一个矢量纯转动时,它的两个投影矢量即两个复数将保持模长平方和不变做各种变换,这种变换就是su(2),常用表示的生成元是泡利矩阵。
su(3)则是复平面上3个矢量保持模长平方的和的不变的各种变换,它的生成元常用表示是盖尔曼矩阵。
也就是这个矩阵如果在某种情况下支持u(1)群的数学表示,那么它就无法在su(2)群和su(3)群的情景下成立。
这就好比是一个地球人。
他能在地球的环境下安稳生存,那么就绝不可能在没有任何外部措施的情况下在冥王星上存活。
因为冥王星上的温度、气压、含氧量和地球完全是不一样的,想要在冥王星上生存也可以,但是必须要配合其他一些装备——也就是在其他群的情境下更换表达式。
当然了。
如果你是体育生的话另说,毕竟体育生是可以硬抗核聚变的。
但眼下汤川秀树.或者说铃木厚人发现的这个情况却有些特殊。
根据赵忠尧等人在论文中的计算显示。
对于su(n+m)群的约化,他们主要通过使用杨图[w]标记的杨算符y[w]作用在其张量空间得到。
经过严格的讨论(这里忽略讨论过程)最终可以得到一个结果:
在y[w]投影构成的张量空间中,有属于子群su(n)su(m)不可约表示[λ]x[μ]的子空间,即在表示[w]关于子群的分导表示约化中出现子群表示[λ]x[μ]。
这属于对角矩阵在su(3)群的某种表示,整个推导过程汤川秀树没有发现任何问题。
但问题是
在引入了中微子的那个额外项后,这个对角矩阵的三个杨图[w],[λ]和[μ]的行数都小于了n+m,n和m。
这代表了在这个框架下,数学层面可以用左手场ψl代替右手场ψr,且可以看出ψl所属的表示与ψr所属的表示互为复共轭。
用人话来说就是.
对角矩阵不需要太过变化,就能在su(2)群成立了。
用上头的例子来描述,就是一个地球人在没有任何外力的情况下在冥王星上活了下来。
这tmd就很离谱了.
想到这里。
汤川秀树忍不住与小柴昌俊还有朝永振一郎对视了一眼。
这是推导错误?
还说内部另有他因?
如果只是前者那自然没什么好说的,推导错误的情况下什么事情都有可能发生。
但如果这个推导过程没有问题.那么这个所谓的,问题可就大了