第七百三十一章 三弹齐爆!(下)(2 / 4)

这样可以定义一个立体角公式Ω=sr,面积微元为rsin(θ)dθdψ,立体角为Ω=sin(θ)dθdψ,闭合曲线的立体角就是Ω=∫sinθdθdψ=2π(1osθ0)。

所以立体角的单位并不是很多人可能下意识认为的,而是sr。

立体角的最大值是4π,或者约等于12.57。

在核聚变过程中。

立体角是起爆角动量的联动参数,某种意义上可以理解成作家单日码字总数和码字时速的关系。

在每天码字时间.也就是x射线传播速度不变的情况下。

作家码字时速(起爆角动量)越快,单日码字(立体角)的总数就会越多(高),反之亦然。

而就像大多数作家最少都要日更四千字一样,立体角在每个情景下都会有一个理论上的下限。

这下限具体会根据每个系统框架的设定而变动,在大于设计的这个框架中,立体角理论上应该不会低于7才对。

现场除了张清之外还有不少理论方面的大佬,他们闻言也纷纷拿起笔做了个简单计算。

在大于已经明确给出了相关参数的情况下,这种计算过程说白了就是单纯用高斯消元法去解三元三次方程组。

因此两分钟不到。

很多学者便放下了笔,或是与身边的人低声做起了交流,或是轻轻点了点头。

很明显。

张清所说的情况确实存在——大于设计的立体角太小了。

低于下限的立体角虽然可以增加核材料的爆炸效率,但对于后续的能量传输却是一大致命缺陷,很容易导致起爆失败——就像作家日更少于4000一样,可以这样搞,但伱全勤就没了。

不过大于此时的表情却显得很淡定,只见他先是等所有在计算的学者们都放下了笔,才慢慢说道:

“没错,张清同志,如果从卢瑟福公式的思路来看,这个立体角确实有些小了。”

“据我们目前掌握的信息,无论是海对面还是毛熊的千层饼氢弹,应用的也都是卢瑟福公式。”

“但是有没有一种可能——我只是说可能啊,卢瑟福公式虽然适用于立体角的推导,但它其实并不是效率最大化的选择?”

张清顿时一怔。

接着大于想了想,继续说道:

“咱们基地的ca10运输车大家都知道吧,理论上它的最高车速是每小时65公里。”

“但这并不代表ca10车上那款5.6升6缸发动机的极限就是这个数字,如果把它换到一辆硬件条件更加优秀的车子上,那么它的时速说不定能爆发到80公里。”

“ca10就是卢瑟福公式,它能够流畅的驾驭那款发动机,甚至跑几千公里都不会出问题,但却并不是发动机的极限框架。”

这一次,张清总算听懂了大于的意思:

“于敏同志,你是说你推导出了一个比卢瑟福公式更加高效的散射公式?”

大于重重点了点头:

“没错。”

接着大于顺手拿起粉笔,直接在就近的黑板上写了起来:

“卢瑟福公式描述的是一种经典散射截面,在原子弹也就是核裂变的情景下都属于一个很优秀的理论。”

“但是根据我的推导,当条件换成聚变.哪怕是不可控聚变框架的时候,点粒子的碰撞参数其实存在一个陷阱。”

张清声调拔高了几分:

“陷阱?”

“是的。”

举报本章错误( 无需登录 )